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We develop a communication-efficient distributed estimation for the 1-bit compressive sensing
where unknown sparse signals are coded into binary measurements with noises and sign
flips. We allow for distinctive sign-flipped probabilities and intensities of noises for
measurements collected at different nodes, which raises the heterogeneity issue. We suggest a
distributed algorithm through penalized least squares to recover the sparse signals. This
algorithm is computationally very efficient with only gradient information communicated.
The resulting distributed estimate converges after only one iteration even when a lousy initial
estimate is provided and achieves a nearly oracle rate after a constant number of iterations. We
prove that, up to a proportionality constant, with high probability, the distributed estimate
approximates the underlying true sparse signal with precision 𝛿 after a finite number of
iterations as long as the total sample size 𝑁 satisfies 𝑠 log 𝑝 /(𝛿!𝑁) = Ο(1), where 𝑝 is the
dimension and 𝑠 is the number of non-zero elements of the underlying true sparse signals.
We also establish statistical guarantee for support recovery. Extensive experiments are
provided to illustrate the effectiveness of our proposed distributed algorithm.

Abstract

Motivation

We assume throughout at each local node, 𝑛 measurements are collected and denoted as
𝑥!,# , 𝑌!,# , 𝑖 = 1,… , 𝑛, 𝑗 = 1,… ,𝑚 . The subscript (𝑖, 𝑗) stands for the 𝑖-th observation

scattered at the 𝑗-th node. Then we have 𝑁 ≝ 𝑛𝑚 measurements evenly scattered at 𝑚 nodes.
Global loss: 
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Surrogate loss:
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where 𝑧3 = ∑,,( 𝑥,,(𝑌,,(.
ℓ*-regularized least squares (Lasso). 
Lasso is  widely-used for high-dimensional
regression models with a sparsity structure. 

Aims for 𝜷∗. By targeting on 𝜷∗ instead 
𝜷𝟎, we work around the non-smoothness 
inheriting from the model.

Surrogate loss function. Substitute global
higher order information with local one that 
enables a communication-efficient algorithm.

Iteration times of Algorithm 1. The number of iterations we need to achieve the oracle rate is

𝑡 ≥ log 𝑁𝑠/𝑛 / log 𝑐4𝑛/ 𝑠! log𝑁 , for some 𝑐4 > 0,
which increase logarithmically with the number of nodes 𝒎.
Communication cost of Algorithm 1. In Algorithm 1, the communication cost mainly resides
in the transmission of 𝑧3 and FΣ Q𝛽(78*). The overall communication cost of Algorithm 1 is of
order 𝑂(𝑚𝑝).

Problem setup and methodology

FIG 2. The horizontal axis stands for the number of nodes m, and the vertical axis stands for
the l2-error in (A) and the F1-score in (B) of the divide-and-conquer estimate (dot-dash),
distributed estimate (solid) and pooled estimate (dotted), respectively, with the total sample
size N = 21600, the sparsity level s = 30, and the dimension p = 5000.

Effect of local sample size

FIG 3. The horizontal axis stands for the base-2 logarithm of the number of nodes m in both (A)
and (B), and the vertical axis stands for the base-2 logarithm of the l2-error in (A) and the F1-
score in (B) of the divide-and- conquer estimate (dot-dash), distributed estimate (solid) and
pooled estimate (dotted), respectively. We fix the local sample size n = 800, the sparsity level s
= 30, and the dimension p = 2000.

Effect of sample size

Since seminal works of [1, 2], compressive sensing (CS) has become one of the most
important approaches to approximate low dimension signals from under-determined and noisy
measurements. The 1-bit compressive sensing, which codes each continuous infinite-precision
measurement into a single bit, has been found very useful in a variety of applications such as
wireless sensor network, cognitive radios and pattern recognition.

Our contributions. We provide a 
communication-efficient algorithm to recover 
the sparse signal from a heterogeneous 
distributed system with particular attention 
paid to the 1-bit compressive sensing problem. 
The communication cost of our distributed 
algorithm is Ο(𝑚𝑝), which is the minimal 
price  a distributed algorithm has to pay. 
We derive  non-asymptotic error bounds for 
the  resultant multi-rounds distributed estimates. After a finite number of iterations, the 
estimate achieves a nearly oracle rate without severe restrictions on 𝑚.

TABLE 1. Both the ℓ$-error and the 𝐹%-score of the estimates under different sparsity levels 𝑠.
We fix 𝑝 = 10000, 𝑛 = 1000 and 𝑁 = 10000.

Distributed Decoding From Heterogeneous 1-Bit Compressive Measurements

Problem setup and methodology
Distributed compressive sensing. The 1-bit compressive sensing assumes that at 𝑗-th node

𝑌( = 𝜉(sign 𝐱(.𝜷4 + 𝜀( , 𝑗 = 1,⋯ ,𝑚,
where 𝑌( is the 1-bit measurement, 𝜉( is a random variable modeling the sign flip of 𝑌(,
namely, pr 𝜉! = 1 = 1 − pr 𝜉! = −1 = 𝑞!, 𝐱( is a 𝑝-vector of explanatory variables, 𝜷4 is the
unknown parameter of interest and 𝜀( is an independent random error with mean 0 and
variance 𝜎!.
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is proportional to 𝜷4. It suffices to estimate 𝜷4. 
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FIG 1. The horizontal axis stands for the number of iterations.
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